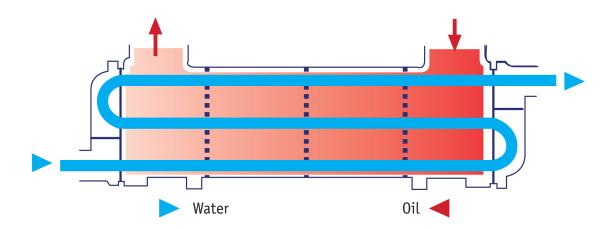


The Professional Choice

SWO Shell & Tube Water Oil Cooler

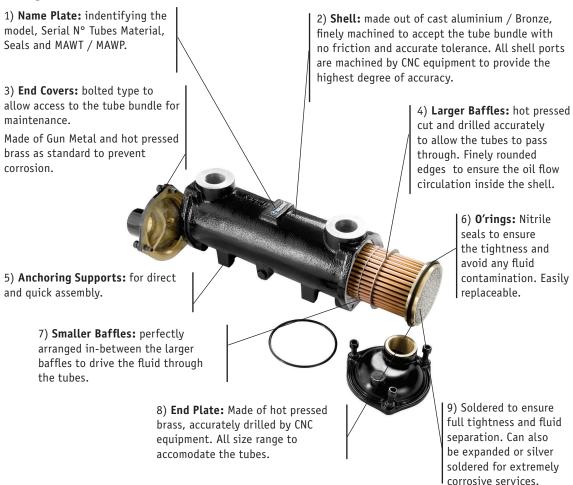
OLAER SWO | Shell & tube water oil cooler



Olaer is a global player specialising in innovative, efficient system solutions for temperature optimisation and energy storage. All over the world, our products are working in the most diverse environments and applications.

Shell & Tube Water Oil Coolers

Theory and Application of Shell & Tube Water Oil Coolers


Two fluids, of different starting temperatures, flow through the water oil cooler. One fluid flows through the internal tubes and the other flows around the tubes inside the shell. Heat is transferred from one fluid to the other through the tube walls, either from inside the tubes to the surrounding fluid or vice versa.

Flow range:	0 – 900 l/min
Design Pressure:	0il side 15 bar / water side 10 bar
Max working temperature:	+95 °C with NBR seals
Connections:	³ /4" BSP - 3" BSP

Specifications may be changed without prior notice. Please contact Olaer for specific details.

Design Attributes

Design Features

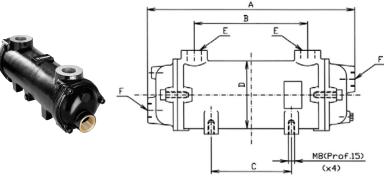
Olaer Shell & Tube Water Oil Coolers are serial manufactured to cater for the most common power requirements in the oilhydraulics industry. The serialised manufactured units range from the smallest size (TP-A1) with 3 KW of heat dissipation power to the largest size (TP-F6) with 500 KW per average. Olaer Shell & Tube Water Oil Coolers are of floating tube bundle design.

Materials of construction (primary standards in bold letters) Industrial Version:

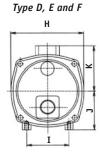
SHELL: Aluminium, Bronze | END COVERS: Hot pressed brass, Bronze | TUBES: Copper, CuNi 90/10 | BAFFLES: Aluminium | END PLATES: Brass | O-Rings/Seals: NITRILE

Marine Version:

SHELL: Aluminium, Bronze | END COVERS: Hot pressed brass, Bronze | TUBES: Copper, CuNi 90/10 | BAFFLES: Aluminium | END PLATES: Brass | O-Rings/Seals: NITRILE

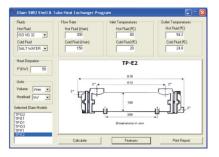

Application Limits

Maximum Working Temperature: 95°C with NBR seals (this is the peak temperature and should not be understood as continuous service temps). Design Pressure: Oil side 15 bar / water side 10 bar (pressure - temperature charts should be observed).


Installation and Maintenance

The Olaer Shell & Tube Water Oil Coolers may be installed vertically or horizontally but both fluids must circulate counter current flow. The cooler could be installed in the return line to the tank or in a closed circuit, and bypass isolating be set in place to allow for maintenance. Consult your nearest Olaer distributor for complete operating and maintenance booklets if not received along with the product, alternatively it can be downloaded from our website: www.olaer.com.

Main Dimensions and Typical Performance


Model	Dimensions mm											Dissipated Power	Oil Flow Rate	Water Flow Rate	Oil Pressure Drop	Water Pressure Drop	Surface	Weight
	Α	В	C	D	EF	G	G1	H	Ι	J	K	kW	l/min	l/min	bar	bar	m²	kg
Tp-A 1	195	72	38	86	3/4″	50	55	-	54	55	60	3	30	15	0.10	0.02	0.13	3
Tp-A 2	263	142	106	86	3/4″	50	55	-	54	55	60	6	46	23	0.19	0.05	0.22	3.5
Tp-A 3	349	228	192	86	3/4″	50	55	-	54	55	60	9	56	28	0.36	0.09	0.32	4
Tp-A 4	448	326	290	86	3/4″	50	55	-	54	55	60	13	64	32	0.60	0.13	0.46	4.7
Tp-A 5	576	454	418	86	3/4″	50	55	-	54	55	60	16	56	28	0.56	0.12	0.68	5.5
Tp-B 1	273	123	109	108	1″	60	65	-	77	65	70	8	66	33	0.16	0.02	0.33	5
Tp-B 2	355	205	190	108	1″	60	65	-	77	65	70	12	80	40	0.32	0.03	0.48	6
Тр-В З	452	302	289	108	1″	60	65	-	77	65	70	18	104	52	0.96	0.07	0.66	7
Tp-B 4	587	437	422	108	1″	60	65	-	77	65	70	25	106	53	1	0.11	0.90	8.2
Tp-B 5	730	580	566	108	1″	60	65	-	77	65	70	29	98	49	1.04	0.14	1.16	10
Tp-C 1	372	187	93	130	11/4″	70	80	-	77	75	80	16	100	50	0.28	0.04	0.64	9
Tp-C 2	472	287	193	130	1¼″	70	80	-	77	75	80	26	120	60	0.55	0.07	0.90	10
Tp-C 3	600	416	322	130	11/4″	70	80	-	77	75	80	36	140	70	0.74	0.13	1.23	12.5
Tp-C 4	744	559	465	130	11/4″	70	80	-	77	75	80	48	160	80	1.06	0.17	1.60	14.5
Tp-C 5	922	737	643	130	11/4″	70	80	-	77	75	80	56	140	70	0.95	0.16	2.07	17.5
Tp-D 1	505	273	109	162	1½″	-	-	177	119	95	100	40	180	90	0.40	0.07	1.58	20
Tp-D 2	634	402	238	162	11/2″	-	-	177	119	95	100	52	200	100	0.55	0.09	2.14	24
Tp-D 3	780	548	384	162	1½″	-	-	177	119	95	100	66	220	110	0.62	0.12	2.79	27
Tp-D 4	954	722	558	162	1½″	-	-	177	119	95	100	84	240	120	0.80	0.16	3.57	32
Tp-D 5	1160	928	764	162	11/2″	-	-	177	119	95	100	108	260	130	1	0.19	4.48	38
Tp-D 6	1364	1132	968	162	11/2″	-	-	177	119	95	100	120	240	120	0.96	0.21	5.38	45
Tp-E 1	675	372	239	198	2″	-	-	206	120	110	120	76	320	160	0.44	0.09	3.27	33
Tp-E 2	816	513	380	198	2″	-	-	206	120	110	120	106	360	180	0.64	0.13	4.24	39
Тр-Е З	998	696	560	198	2″	-	-	206	120	110	120	134	400	200	0.90	0.20	5.45	45
Tp-E 4	1204	901	766	198	2″	-	-	206	120	110	120	175	420	210	1.10	0.25	6.82	54
Tp-E 5	1408	1102	968	198	2″	-	-	206	120	110	120	205	400	200	1.15	0.28	8.22	64
Tp-E 6	1712	1406	1272	198	2″	-	-	206	120	110	120	240	360	180	1.10	0.28	10.27	75
Tp-F 1	754	330	236	278	3″	-	-	288	180	155	170	133	720	360	0.36	0.09	7.20	47
Tp-F 2	900	476	382	278	3″	-	-	288	180	155	170	180	780	390	0.50	0.13	9.14	57
Tp-F 3	1077	654	560	278	3″	-	-	288	180	155	170	250	840	420	0.62	0.17	11.81	68
Tp-F 4	1280	856	762	278	3″	-	-	288	180	155	170	325	900	450	0.76	0.25	14.60	79
Tp-F 5	1484	1060	966	278	3″	-	-	288	180	155	170	410	960	480	1	0.32	17.30	91
Tp-F 6	1790	1364	1270	278	3″	-	-	288	180	155	170	500	900	450	1.16	0.52	21.54	105

Drain/vent plugs

Water side (End covers)		Oil side (Shell)				
For series A,B,C & D	¹⁄₄″ BSP	For series B,C & D	1/4″ BSP			
For series E & F	¹⁄₂″ BSP	For series E & F	¹⁄₂″ BSP			
There is no drain plug in the shell for A-serie.						

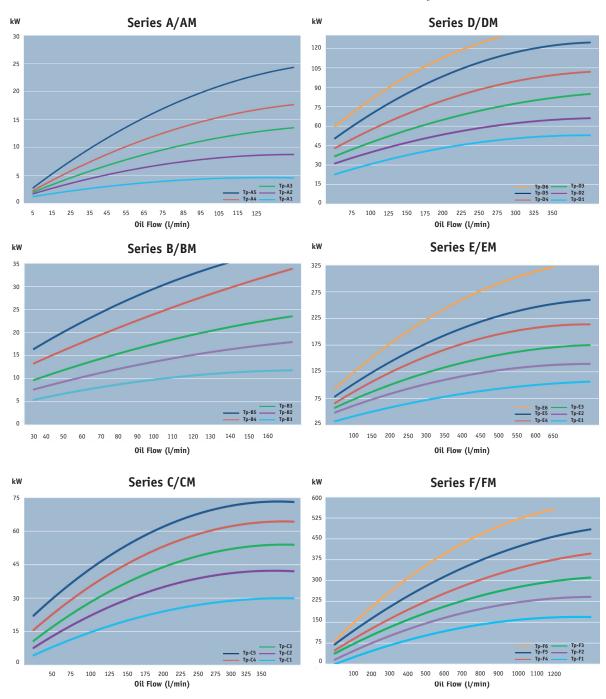
The above table shows the typical performance of the standard range of OLAER models. This table should be taken as a quick reference and always supported by more detailed performance graphs or the use of our Olaer software.

The table is built using the following typical performance data: Oil Outlet temperature of 50 °C, Water Inlet temperature of 25 °C and Oil Viscosity of 38 cSt. Any other parameter would alter the typical selection. Ask you nearest Olaer distributor for the Olaer software, a powerful tool, which will enhance your quotations, optimise selection process and stores a process fluid data base. Pressure drop diagrams are available at our technical department.

Industrial Shell & Tube Water Oil Cooler Series A - F / AM - FM

Olaer Shell and Tube Heat Exchangers are designed in a three pass tube stack arrangement with cooling fluid inlet and outlet in opposite sides and counter current flows. Tube stack is fully floating type thus thermal stresses are minimised while maintenance operations are kept to a minimum.

The Olaer range of Industrial Shell & Tube Water Oil Coolers is suitable for any sort of heat transfer fluids, heating or cooling process fluids.



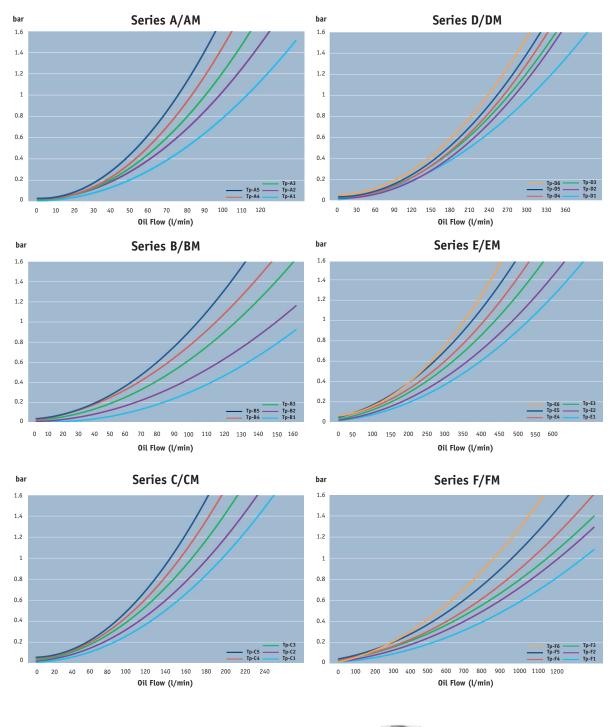
Part		Name	Material
1		Shell	Aluminium/Bronze
2		Tube Stack	
2	2.1	Tubes	Copper/Copper-Nickel
2	2.2	Tube plates	Brass
2	2.3	Baffles	Aluminium
		Welding	Soldered 60/40
3		End Caps	Brass/Bronze
4		Seals	NBR
5		Cover screws	Steel
6		Drain plugs	Brass

For industrial version: copper tubes are standard For marine version: copper-nickel tubes 90/10 are standard

Performance Graphs

Graphs were plotted using the following parameters: $\Delta T = 25$ °C, Viscosity of oil: 38 cSt (SAE 30) and water.

Temperature Correction Factors


When temperature gap between oil outlet and water inlet exceeds the given 25 °C the following correction factors should be used: 10 °C: 0.4 / 15 °C: 0.6 / 20 °C: 0.8 / 30 °C: 1.2 / 35 °C: 1.4 / 40 °C: 1.6 (multiply KW by the suitable correction factor).

Flow Rate Correction Factors

For water flow rates other than 50% of the oil flow rate, the following correction factors should be used: 25%: 0.8 / 100%: 1.2 (multiply the flow rate by the suitable correction factor).

The Olaer software is available also for units that fall outside the above curves. Data subject to technical modification without prior notice.

Oil Pressure Drop

- in Fluid Energy Management

Global perspective

and local entrepreneurial flair

Olaer is a global player specialising in innovative, efficient system solutions for temperature optimisation and energy storage. Olaer develops, manufactures and markets products and systems for a number of different sectors, e.g. the aircraft, engineering, steel and mining industries, as well as for sectors such as oil and gas, contracting and transport, farming and forestry, renewable energy, etc.

All over the world, our products operate in the most diverse environments and applications. One constantly

repeated demand in the market is for optimal energy storage and temperature optimisation. We work at a local level with a whole world as our workplace – local entrepreneurial flair and a global perspective go hand in hand.

Our local presence, long experience and a wealth of knowledge combine with our cutting-edge expertise to give you the best possible conditions for making a professional choice.